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Why interested in “special” factoring factory?

factoring enthusiasts worldwide

are constantly burning cycles on “special” numbers

• can we factor these “special” numbers more efficiently 

by combining the effort à la Coppersmith?

• potential side-effect: do we learn anything about 

effectiveness of Coppersmith’s factorization factory

to share the factoring effort of many RSA moduli?

attacking a single RSA modulus may not be

economically viable, but factoring lots of them may

become an attractive proposition if effort can be shared

our crypto salespitch
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well-chosen “special” numbers in current range of interest

we saved about 50% on factorization of

17 Mersenne numbers in the 1000 to 1200 bit range

(largest so far 211931; previous record 210611)

potential for application to 1024-bit RSA is questionable

• if target moduli not known in advance: storage issues

(cumbersome but surmountable for “special” numbers; 

but our target set was known in advance)

• if target moduli known in advance: computational

inefficiencies (that do not occur for “special” numbers) 

make regular “one-by-one” approach more efficient
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solves x2  1 mod n: n = gcd(x  1,n)gcd(x + 1,n)

Because m  n1/d, single  m works for many different n

(all with different polynomials f )

Factorization factory idea: collect a, bZZ0 for which

amb is smooth, use those pairs for many n and f

if many n: amortization leads to overall savings
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1. d > 1, m  2L/d, collect a, bZZ0 s.t. amb smooth

2. any n  md: n = fdm
d+…+f1m+f0  f(m)  0 mod n,

locate smooth bdf(a/b), and apply matrix step as usual

“special” numbers: does same shared-m trick apply?

“special” numbers   equivalent to  “nice” polynomials

(example: F9| (2
103)5+8  f(X) = X5+8 has f(2103)  0 mod F9),

thus much higher bdf(a/b) smoothness probability

relevant “special” numbers (such as Cunningham numbers):

• no shared m-value with enough “nice” polynomials

 trick does not apply without losing “special” advantage

unless we reverse the roles of amb and bdf(a/b):

single f may cater to several m-values (and thus n-values)
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“Special” factorization factory

1. for “nice” f, collect a, bZZ0 s.t. bdf(a/b) smooth

2. any m for which n = f(m) is relevant:

locate smooth amb, and apply matrix step as usual

here applied to factor Mersenne numbers (2k1):

f(X) = X8  2 leads to 11 + 1 relevant composites:

• 21007  1  for m = 2126

• 21009  1  for m = 2126

• 21081  1  for m = 2135 

…

• 21193  1  for m = 2 149 

• 21199  1  for m = 2150

f(X) = X8  8 leads to 6 + 7 relevant composites

(1+7 factored by ECM – 10+3 of 11+6 factored so far)
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Nuts & bolts
1. for “nice” f, collect a, bZZ0 s.t. bdf(a/b) smooth

2. any m for which n = f(m) is relevant:

locate smooth amb, and apply matrix step as usual

storage of Step 1 (a,b) pairs would require 70TB

 right after generating a batch of Step 1 (a,b) pairs,

we processed it for all m-values, deleting useless pairs

smooth bdf(a/b)-values collected using usual lattice sieving

smooth amb-values located using factorization trees

because sieving is – as predicted – too inefficient

different for regular 1024-bit factorization factory?

for two numbers: additional sieving with other polynomials

most matrix steps not “as usual” but with “double product” 
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(after initial ECM effort – reported elsewhere)

bdf(a/b)-sieving and amb-factorization trees

from May 22, 2010, to September 11, 2014:

about 3665+2065 = 5730 core years (2.2GHz)

matrices started December 7, 2012, four still crunching:

about 1250+  500 = 1750 core years expected

largest matrix 297’605’781  297’606’805

with 81’028 million non-zero entries

both relation collection and matrix step

surpass RSA-768 effort by a factor of about 4

total 7500 core years (86.7% EPFL, 12.8% MSR, 0.5% CH grid), about half of

estimated 14’000 - 21’000 core years’ individual effort
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• after L(2.007) preparation, factor n in L(1.639)

• advantageous if   > L(2.0071.923) = L(0.084) distinct

n values of about the same size must be factored

“Special” factorization factory:

• after L(1.615) preparation, factor n in L(1.211)

• advantageous if   > L(1.6151.526) = L(0.089) distinct

“special” (and suitable) n values must be factored

• more such n values: individual time reduces to L(0.763)

while preparation time  (before amortization)
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•

is a 346-bit prime that divides the 1193-bit number

(this is the current special number field sieve record)
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